Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д. И. Менделеева»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Полимерные нанокомпозиты»

Направление подготовки 28.04.03 Наноматериалы

Магистерская программа «Химическая технология наноматериалов» Квалификация «магистр»

РАССМОТРЕНО И ОДОБРЕНО

На заседании Методической комиссии

Ученого совета

РХТУ им. Д.И. Менделеева

«25 » мал 2021 г.

Председатель

Н.А. Макаров

Москва 2021

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования — магистратура по направлению подготовки 28.04.03 «Наноматериалы», рекомендациями Методической комиссии и накопленным опытом преподавания дисциплины кафедрой наноматериалов и нанотехнологии РХТУ им. Д.И. Менделеева. Программа рассчитана на изучение дисциплины в течение 1 семестра.

Дисциплина «*Полимерные нанокомпозиты*» относится к части учебного плана, формируемой участниками образовательных отношений, блоку дисциплин по выбору.

Цель дисциплины - приобретение знаний, умений и формирование компетенций в области полимерных нанокомпозитов и ознакомление с их структурой, свойствами, возможностями применения.

Задачи дисциплины – формирование у обучающихся представлений об основных понятиях полимерных композиционных материалов, их свойствах, способах получения, способах управления их характеристиками и путями практического использования.

Дисциплина «*Полимерные нанокомпозиты*» преподается в 3 семестре. Контроль успеваемости студентов ведется по принятой в университете рейтинговой системе.

Рабочая программа дисциплины может быть реализована с применением электронных образовательных технологий и электронного обучения полностью или частично.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины направлено на приобретение следующих компетенций и индикаторов их достижения:

Задача профессиональной деятельности	Объект или область знания	Код и наименование ПК	Код и наименование индикатора достижения ПК	Основание (профессиональный стандарт, анализ опыта) Обобщенные трудовые функции
	Тип задач проф	ессиональной деятельнос	ги: научно-исследователь	ский
- проведение	- основные	ПК-2 Способен	ПК-2.1 Знает методы	Анализ требований к
самостоятельных	типы	осуществлять	получения	профессиональным компетенциям,
научно-	наноматериалов:	разработку и	наноструктурированных	предъявляемым к выпускникам
исследовательских	различной	корректировку	материалов	направления подготовки на рынке
работ в области	размерности (0, 1, 2,	технологических	ПК-2.2 Умеет	труда, обобщение зарубежного
нанотехнологий,	3-мерные,	процессов получения	проводить эксперимент	опыта, проведения консультаций с
требующих широкой	фрактальные	наноструктурированных	по заданным	ведущими работодателями,
фундаментальной	кластеры), природы	материалов	методикам,	объединениями работодателей
междисциплинарной	(неорганические,		обрабатывать и	отрасли, в которой востребованы
подготовки и владения	органические,		анализировать их	выпускники в рамках направления
навыками современных	смешанные);		результаты	подготовки.
экспериментальных	агрегатного		ПК-2.3 Владеет	
методов;	состояния (жидкие,		навыками	Профессиональный стандарт «26.006
- выработка новых	твердые, смешанного		формирования методик	Специалист по разработке
теоретических подходов	типа (гели,		получения новых	наноструктурированных
и принципов дизайна	суспензии и пр.));		наноструктурированных	композиционных материалов»,
наносистем и	- все виды		материалов	утвержденный приказом
наноматериалов с	исследовательского,			Министерства труда и социальной
заданными свойствами;	контрольного,			защиты Российской Федерации от
 разработка новых 	аналитического и			«8» сентября 2015 г. № 604н
высокоэффективных	испытательного			С Организация аналитического
методов создания	оборудования для			контроля этапов разработки
современных	изучения структуры			наноструктурированных
наносистем и	и свойств			композиционных материалов с
наноматериалов;	наноматериалов;			заданными свойствами (уровень
- способность к	- компьютерное			квалификации – 7)
составлению	программное			D Управление методами и

методических	обеспечение для			средствами проведения
документов при	обработки			исследований и разработок
проведении научно-	экспериментальных			наноструктурированных
исследовательских и	данных по			композиционных материалов
лабораторных работ;	исследованию			(уровень квалификации – 7)
участие в	наноматериалов и			Профессиональный стандарт «40.011
экспериментальной и	наносистем;			Специалист по научно-
технико-проектной	– отчеты по			исследовательским и опытно-
оптимизации	научной работе,			конструкторским разработкам»,
существующих	научные публикации			утвержденный приказом
наукоемких методик	в российских и			Министерства труда и социальной
создания наносистем и	зарубежных			защиты Российской Федерации от
наноматериалов для	изданиях;			«4» марта 2014 г. № 121н.
успешной конкуренции	- аналитические			В Проведение научно-
на рынке идей и	обзоры в области			исследовательских и опытно-
технологий.	производства и			конструкторских разработок при
	исследования			исследовании самостоятельных тем
	наноматериалов.			(уровень квалификации – 7)
– анализ и	- основные	ПК-3 Способен	ПК-3.2 Умеет выбирать	Анализ требований к
обобщение результатов	типы	самостоятельно	методы и средства	профессиональным компетенциям,
научно-	наноматериалов:	проводить научно-	проведения	предъявляемым к выпускникам
исследовательских	различной	исследовательские	исследований и	направления подготовки на рынке
работ, поиск и анализ	размерности (0, 1, 2,	работы по создания,	разработок	труда, обобщение зарубежного
научной и технической	3-мерные,	исследованию и		опыта, проведения консультаций с
информации в области	фрактальные	применению наносистем		ведущими работодателями,
нанотехнологий и	кластеры), природы	и наноматериалов		объединениями работодателей
смежных дисциплин для	(неорганические,			отрасли, в которой востребованы
научной, патентной и	органические,			выпускники в рамках направления
маркетинговой	смешанные)			подготовки.
поддержки проводимых	агрегатного			
фундаментальных	состояния (жидкие,			Профессиональный стандарт «26.006
исследований и	твердые, смешанного			Специалист по разработке

технологических	типа (гели,		наноструктурированных
разработок,	суспензии и пр.));		композиционных материалов»,
- составление	- компьютерное		утвержденный приказом
аналитических обзоров,	программное		Министерства труда и социальной
самостоятельная	обеспечение для		защиты Российской Федерации от
подготовка публикаций	обработки		«8» сентября 2015 г. № 604н
в отечественных и	экспериментальных		D Управление методами и
зарубежных изданиях;	данных по		средствами проведения
- способность к	исследованию		исследований и разработок
составлению	наноматериалов и		наноструктурированных
методических	наносистем;		композиционных материалов
документов при	- отчеты по		(уровень квалификации – 7)
проведении научно-	научной работе,		Профессиональный стандарт «40.011
исследовательских и	научные публикации		Специалист по научно-
лабораторных работ;	в российских и		исследовательским и опытно-
участие в	зарубежных		конструкторским разработкам»,
экспериментальной и	изданиях;		утвержденный приказом
технико-проектной	- аналитические		Министерства труда и социальной
оптимизации	обзоры в области		защиты Российской Федерации от
существующих	производства и		«4» марта 2014 г. № 121н.
наукоемких методик	исследования		D Осуществление научного
создания наносистем и	наноматериалов.		руководства в соответствующей
наноматериалов для			области знаний (уровень
успешной конкуренции			квалификации – 7)
на рынке идей и			
технологий.			

В результате изучения дисциплины студент магистратуры должен:

Знать:

- основные виды матриц и наполнителей для создания полимерных нанокомпозитов;
- основные свойства различных полимерных матриц и полимерных композиционных материалов;
- основные методы переработки полимерных нанокомпозитов;
 уметь:
- выбрать полимерный нанокомпозиционный материал для заданной области применения
- выбрать нужный тип матрицы и наполнителя для создания полимерного наноматериала с заданными свойствами;

владеть:

- информацией о существующих и перспективных областях применения полимерных нанокомпозитов;
- навыками подготовки докладов на основе анализа современной научной литературы в области полимерных нанокомпозитов.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

D	Объем дисциплины			
Вид учебной работы	3E	Акад.	Астр. ч.	
Общая трудоемкость дисциплины	5	180	135	
Контактная работа – аудиторные занятия:	1,41	51	38	
в том числе в форме практической подготовки	0,11	4	3	
Лекции	0,47	17	13	
Практические занятия (ПЗ)	0,94	34	25	
в том числе в форме практической подготовки	0,11	4	3	
Самостоятельная работа	2,59	93	70	
в том числе в форме практической подготовки	0,11	4	3	
Контактная самостоятельная работа	2.50	0,4	0,3	
Самостоятельное изучение разделов дисциплины	2,59	92,6	69,7	
в том числе в форме практической подготовки	0,11	4	3	
Вид контроля:				
Экзамен	1	36	27	
Контактная работа – промежуточная аттестация	1	0,4	0,3	
Подготовка к экзамену.	1	35,6	26,7	
Вид итогового контроля:		Экзамен	[

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Разделы дисциплины и виды занятий

	4.1. Разделы д	Академ. часов						
№ п.п.	Раздел дисциплины	Всего	в т.ч. в форме пр. подг.	Лекции	Прак. зан.	в т.ч. в форме пр. подг.	Сам. работа	в т.ч. в форме пр. подг.
1	Основы полимерных композиционных наноматериалов	74	-	10	18	-	46	-
1.1	Введение, основные определения, краткая характеристика композиционных материалов.	12	-	2	-	1	10	ı
1.2	Механические свойства полимерных материалов.	16	-	2	4	-	10	-
1.3	Получение полимерных композиционных материалов.	20	-	2	6	-	12	_
1.4	Основные свойства полимерных композиционных материалов.	26	-	4	8	-	14	-
2	Методы переработки, особенности и перспективы полимерных композиционных наноматериалов	70	-	7	16	-	47	-
2.1	Основные методы переработки полимерных нанокомпозитов.	22	4	2	6	2	14	2
2.2	Полимерсиликатные нанокомпозиты.	16	-	2	4	1	10	ı
2.3	Существующие и перспективные области применения полимерных нанокомпозитов	32	4	3	6	2	23	2
	Подготовка к экзамену	36	-	-		-	36	-
	Всего часов	180	8	17	34	4	93	4

4.2. Содержание разделов дисциплины

Раздел 1. Основы полимерных композиционных наноматериалов

Введение, основные определения, краткая характеристика композиционных материалов. Основные определения. Роль полимерных нанокомпозитов в современном мире. Классификация полимеров.

Механические свойства полимерных материалов. Механические свойства полимеров. Растворы полимеров. Вязкотекучее состояние полимеров. Упругие свойства полимеров. Стеклообразное состояние высокомолекулярных соединений. Кристаллизация полимеров.

Получение полимерных композиционных материалов. Получение полимерных нанокомпозитов. Виды нанонаполнителей для полимеров. Нанокомпозиты на основе термопластов. Нанокомпозиты на основе реактопластов. Методы введения нанонаполнителей в полимерную матрицу. Нанокомпозицонные наполнители для полимерных матриц.

Основные свойства полимерных композиционных материалов. Возрастание прочностных и деформационных свойств, ударных характеристик, барьерных свойств (газо- и водопроницаемости), снижение горючести и т.д. Влияние нанонаполнителей на реологические свойства, теплостойкость и термостойкость полимеров. Критическая длина волокон.

Раздел 2. Методы переработки, особенности и перспективы полимерных композиционных наноматериалов

Основные методы переработки полимерных нанокомпозитов. Процессы формования изделий из нанонаполненных термопластичных полимерных материалов (экструзия, литье под давлением, специальные методы). процессов формования изделий из нанонаполненных термореактивных полимерных материалов (прессование, литье под давлением, профильное формование).

Полимерсиликатные нанокомпозиты. Структура и свойства монтмориллонита. Понятия интеркаляции и эксфолиации монтмориллонита. Структура полимерсиликатных нанокомпозитов. Дисперсионнонаполненные, волокнистые и слоистые полимерсиликатные нанокомпозиты. Технология получения полимерсиликатных нанокомпозитов.

Существующие и перспективные области применения полимерных нанокомпозитов. Полимерные нанокомпозиты на основе органоглин. Огнестойкие полимерные нанокомпозиты. Методы повышения огнестойкости. Нанометаллы как антипирены. Композиты на основе нановолокон.

5. СООТВЕТСТВИЕ СОДЕРЖАНИЯ ТРЕБОВАНИЯМ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	В результате освоени	ия дисциплины студент должен:	Раздел 1	Раздел 2		
		Знать:				
1	• основные виды матриц и наполнителей для	создания полимерных нанокомпозитов;	+	+		
2	• основные свойства различных полимерных матриц и полимерных композиционных материалов;			+		
3	• основные методы переработки полимерных	• основные методы переработки полимерных нанокомпозитов				
		Уметь:				
4	• выбрать полимерный нанокомпозиционный	-	+			
5	 выбрать нужный тип матрицы и наполнител свойствами 	+	-			
		Владеть:				
6	 информацией о существующих и перспективн 	+	+			
	ультате освоения дисциплины студент должен пр жения:	риобрести следующие профессиональные компетенции и и	ндикаторы	их		
, ,	Код и наименование ПК	Код и наименование индикатора достижения ПК				
7	ПК-2 Способен осуществлять разработку и корректировку технологических процессов	ПК-2.1 Знает методы получения наноструктурированных материалов	+	+		
8	получения наноструктурированных материалов	ПК-2.2 Умеет проводить эксперимент по заданным методикам, обрабатывать и анализировать их результаты	+	+		
9		ПК-2.3 Владеет навыками формирования методик получения новых наноструктурированных материалов	+	+		
10	ПК-3 Способен самостоятельно проводить научно-исследовательские работы по создания, исследованию и применению наносистем и наноматериалов	ПК-3.2 Умеет выбирать методы и средства проведения исследований и разработок	-	+		

6. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

6.1. Практические занятия

Примерные темы практических занятий по дисциплине

No	№ раздела	Темы практических занятий	Часы
п/п	дисциплины	1 0 1 2 1 2 0 1 1 1 0 1 1 1 1 1 1 1 1 1	10021
1	1	Механические свойства полимерных материалов.	4
2	1	Получение полимерных композиционных материалов.	6
3	1	Основные свойства полимерных композиционных	8
	_	материалов.	
4	2	Основные методы переработки полимерных	6
	2	нанокомпозитов.	O
5	2	Полимерсиликатные нанокомпозиты.	4
6	2	Существующие и перспективные области применения	6
0	2	полимерных нанокомпозитов	6

6.2. Лабораторные занятия

Учебным планом подготовки магистров лабораторные занятия не предусмотрены.

7. САМОСТОЯТЕЛЬНАЯ РАБОТА

Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает:

- регулярную проработку пройденного на практических занятиях учебного материала;
- подготовку к контрольным работам по материалу дисциплины;
- ознакомление и проработку рекомендованной литературы, работу с электроннобиблиотечными системами, включая переводы публикаций из научных журналов, цитируемых в базах Scopus, Web of Science, Chemical Abstracts, РИНЦ;
- посещение отраслевых выставок, семинаров и конференций;
- участие в семинарах РХТУ им. Д.И. Менделеева по тематике дисциплины;
- подготовка реферата по указанным темам;
- подготовку к сдаче экзамена по дисциплине.

8. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Общая оценка за дисциплину складывается из оценки работы в семестре (максимально 60 баллов) и оценки, полученной на экзамене (максимально 40 баллов). Оценка текущей работы обучающегося в семестре складывается из оценок за выполнение контрольных работ (до 40 баллов), подготовку рефератов (научных докладов) (до 20 баллов) по тематике дисциплины, максимальная оценка за работу в семестре — 60 баллов.

При оценке научных докладов оценивается качество докладов (глубина проработки темы, использование современных источников информации, в том числе зарубежных) и качество презентации доклада. Презентация докладов происходит на семинарских занятиях, причем остальные студенты задают вопросы докладчику и участвуют в обсуждении доклада.

8.1. Примерная тематика реферативно-аналитической работы

Программой дисциплины предусмотрено выполнение двух реферативно-аналитических работ. Максимальная оценка за каждый реферат составляет 20 баллов.

Подготовка и защита реферата

Подготовка и защита реферата включает в себя поиск и детальный анализ двух и более источников научной информации (научной статьи или патента) по получения наноматериалов различными методами (физическими, химическими) и применению наноматериалов. Анализируется актуальность работы, описанной в статье или патенте, перспективность направления, достоинства, недостатки, практическая значимость и возможность внедрения. Максимальная оценка за реферат –20 баллов. Объем реферата составляет 10-15 страниц.

План реферата по научной статье или патенту.

- 1. Актуальность
- 2. Что сделано
- 3. Достоинства (новые подходы, оригинальные методы, интересные результаты)
- 4. Недостатки
- 5. Практическая значимость и возможность внедрения
- 6. Оценка / Вывод

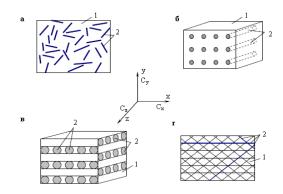
Для защиты реферата нужно: предоставить оригинал статьи или патента (распечатанный), текст реферата в соответствии с планом, сделать доклад и ответить на вопросы.

Примерная тематика реферативно-аналитической работы:

- 1. Композиционные материалы на металлической матрице.
- 2. Композиционные материалы на неметаллической матрице
- 3. Псевдосплавы. Применение, свойства, примеры.
- 4. Полимерные композиционные материалы с гибридной матрицей.
- 5. Керамические нанокомпозиты. Свойства, получение, примеры.
- 6. Дисперсно-упрочненные композиционные материалы. Применение, свойства, примеры.
- 7. Керметы и их свойства. Применение, примеры.
- 8. Волокнистые композиционные материалы.
- 9. Слоистые композиционные материалы.
- 10. Нитевидные нанокристаллы. Получение, свойства и применение.
- 11. Модификаторы нанокомпозитов.

8.2. Примеры контрольных вопросов для текущего контроля освоения дисциплины

Изучение материала каждого раздела заканчивается контролем его освоения в форме контрольной работы. Результаты выполнения контрольных работ оцениваются в соответствии с принятой в университете рейтинговой системой оценки знаний. Максимальная оценка контрольной работы составляет 20 баллов.


Контрольные работы по разделу 1 представляет собой набор из 1 открытого вопроса и из 10 вопросов тестовой части, а по разделу 2 — набор из 15 вопросов тестовой части, затрагивающих темы, рассмотренные в рамках раздела, а также служащие закреплению ранее пройденного материала.

Пример варианта открытого вопроса контрольной работы по разделу 1:

Перечислите методы получения полимерных нанокомпозитов. Более подробно расскажите о любом из методов.

Пример тестовой части контрольной работы по разделу 1:

- 1. Композиционные материалы с несколькими наполнителями называются:
- а) полиматричные; б) мультиматричные; в) гибридные; г) полигибридные.
- 2. К методам получения СКМ относится:
- а) прессование; б) прокатка; в) волочение; г) все ответы
- 3. Где на рисунке изображен волокнистый КМ с продольно-поперечной укладкой?

- 4. К механизму торможения разрушения ВКМ относятся:
- а) разрушение границ раздела за счет расслаивания; б) ветвление трещины; в) вытягивание волокон из матрицы; г) разрыв волокон.
 - 5. Отметьте изотропные КМ:
 - а) волокнистые; б) слоистые; в) дисперсно-упроченные; г) все ответы.
- 6. Керметы это композиционные материалы, которые можно отнести к следующему классу:
- а) «пластичная матрица хрупкий наполнитель»; б) «хрупкая матрица пластичный наполнитель»; в) «хрупкая матрица хрупкий наполнитель».
 - 7. В каком из примеров на границе раздела формируется механическая связь?
 - а) Ti B(волокно); б) Al-W(проволока); в) Y₂O₃-Cr; г) Al₂O₃-Cr.
- 8. Для получения композитного порошка «пластичная матрица хрупкий наполнитель» ДУКМ методом поверхностного окисления стеарин добавляют для:
- а) предотвращения агрегирования; б) защиты от окисления; в) для повышения растворения оксида в металле; г) все варианты правильные.
 - 9. К модификациям диоксида циркония относятся:
 - а) моноклинная; б) тетрагональная; в) гексагональная; г) кубическая

- 10. Для чего применяют деформацию полуфабриката при изготовлении КМ «пластичная матрица хрупкий наполнитель»?
- а) увеличение пористости; б) уменьшение пористости; в) для получения листов полуфабриката; г) нет правильного ответа.

Пример тестовой части контрольной работы по разделу 2:

- 1. Одним из методов получения УУКМ является метод CVI. Что это?
- а) газофазный метод, основанный на увеличении пористости при фильтрации отдельных волокон по размерам с последующим их термическим разложением;
- б) жидкофазный метод, основанный на уплотнении пористых волокнистых каркасов в процессе фильтрации через них газообразных химических прекурсоров, их разложения и осаждения матричного материала на поверхности нагретых армирующих волокон;
- в) газофазный метод, основанный на уплотнении пористых волокнистых каркасов в процессе фильтрации через них газообразных химических прекурсоров, их гомогенного и гетерогенного термохимического разложения и осаждения матричного материала на поверхности нагретых армирующих волокон;
- г) жидкофазный метод, основанный на увеличении пористости при фильтрации отдельных волокон по размерам с последующим их термическим разложением.
 - 2. Граница раздела фаз между компонентами называется:
 - а) профаза; б) интерфаза; в) межфаза; г) нет правильного ответа
 - 3. По химической природе связующего ПКМ делятся на:
 - а) волокна, нити, жгуты, ткани и т.д.; б) изотропные, анизотропные;
 - в) органические и неорганические; г) термореактивные и термопластичные.
 - 4. Что не относится к механизму торможения трещин в СКМ?
- а) затупление вершины трещины; б) ветвление трещины; в) расслоение композита; г) все ответы правильные.
 - 5. Отметьте анизотропные КМ:
 - а) волокнистые; б) слоистые; в) дисперсно-упроченные; г) все ответы.
 - 6. Наиболее точно характеризует нанокомпозиты:
- а) размер наполнителя менее 100 нм; б) размеры прослойки менее 100 нм; в) размеры частиц одной из фаз менее 100 нм; г) размеры частиц хотя бы одной из фаз или размер прослойки между частицами менее 100 нм.
 - 7. К модификациям диоксида циркония относятся:
 - а) моноклинная; б) тетрагональная; в) гексагональная; г) кубическая

- 8. Для получения композитного порошка «пластичная матрица хрупкий наполнитель» ДУКМ методом внутреннего окисления можно взять следующую пару металлов:
- а) Ag матрица, Al наполнитель; $\mathfrak b$) Al матрица, Cu наполнитель; $\mathfrak b$) Be матрица, Ni наполнитель; $\mathfrak r$) Cu матрица, Cr наполнитель.
 - 9. К методам получения непрерывных волокон не относится:
- а) экструзия; б) волочение; в) метод Π -Ж-Т (пар-жидкость-твердое); Γ) пиролиз полимерных волокон.
- 10. Для чего применяют деформацию полуфабриката при изготовлении КМ «пластичная матрица хрупкий наполнитель»?
- а) увеличение пористости; б) уменьшение пористости; в) для получения листов полуфабриката; г) нет правильного ответа.
 - 11. Полимеризация in-situ это:
- а) введение наполнителя в расплавленный полимер; б) смешение дисперсии частиц наполнителя с раствором полимерв с дальнейшим выпариванием растворителя; в) диспергирование наполнителя в мономере, а затем полимеризация, совместно с захваченными наночастицами; г) коагулирование раствора полимера с введенным в него наполнителем путем изменения химического состава
 - 12. СВС процесс, который происходит:
 - а) в твердой фазе; б) в жидкой фазе; в) в газовой фазе; г) нет правильного ответа
- 13. Композиционные материалы, состоящие из двух или более металлоподобных фаз, не взаимодействующих или слабо взаимодействующих между собой это:
- а) эвтектические МКМ; б) пвесдосплавы; г) гибридные МКМ; д) нет правильного ответа.
- 14. Процесс получения сверхтонких нитей (нановолокон) и продукции из них под действием электростатических сил называется:
 - а) экструзия; б) электроплавление; в) электроформование; г)электрополимеризация.
- 15. Композиционный материал с термореактивной полимерной матрицей характеризуется:
- а) Ван-дер-вальсовыми взаимодействиями между молекулами; б)химическим взаимодействием между молекулами; в) отсутствием взаимодействия между молекулами; г) нет правильного ответа

8.3. Вопросы для итогового контроля освоения дисциплины (Экзамен)

Максимальная оценка – 40 баллов.

- 1. Гибридные композиционные материалы.
- 2. Слоистые композиционные материалы.
- 3. Волокнистые композиционные материалы.
- 4. Роль полимерных нанокомпозитов. Классификация полимеров.

- 5. Механические свойства полимеров. Растворы полимеров.
- 6. Упругие свойства полимеров. Стеклообразное состояние высокомолекулярных соединений. Кристаллизация полимеров.
 - 7. Получение полимерных нанокомпозитов.
 - 8. Виды нанонаполнителей для полимеров.
- 9. Нанокомпозиты на основе термопластов. Нанокомпозиты на основе реактопластов.
 - 10. Методы введения нанонаполнителей в полимерную матрицу.
 - 11. Нанокомпозиционные наполнители для полимерных матриц.
 - 12. Основные свойства полимерных композиционных материалов.
- 13. Влияние нанонаполнителей на реологические свойства, теплостойкость и термостойкость полимеров.
 - 14. Основные методы переработки полимерных нанокомпозитов.
- 15. Процессы формования изделий из нанонаполненных термопластичных полимерных материалов
- 16. Процессы формования изделий из нанонаполненных термореактивных полимерных материалов.
- 17. Полимерсиликатные нанокомпозиты. Структура полимерсиликатных нанокомпозитов.
- 18. Дисперсионнонаполненные, волокнистые и слоистые полимерсиликатные нанокомпозиты.
 - 19. Технология получения полимерсиликатных нанокомпозитов.
- 20. Существующие и перспективные области применения полимерных нанокомпозитов.

8.4. Структура и примеры билетов для экзамена

Экзамен по дисциплине «Полимерные нанокомпозиты» включает контрольные вопросы по всем разделам учебной программы дисциплины. Экзаменационный билет состоит из 2 вопросов, относящихся к указанным разделам. Ответы на вопросы экзамена оцениваются из максимальной оценки 40 баллов, исходя из максимальной оценки в 20 баллов за вопрос.

Пример экзаменационного билета:

«Утверждаю»	Министерство науки и высшего образования РФ					
Руководитель	Российский химико-технологический университет					
магистерской программы	имени Д.И. Менделеева					
(Подпись) (И.О.Фамилия)	Кафедра наноматериалов и нанотехнологии					
	28.04.03 «Наноматериалы»					
«» ²⁰ г. Магистерская программа – «Химическая технология						
	наноматериалов»					
	Полимерные нанокомпозиты					
	Билет № 1					
1. Углерод-углеродные композиционные материалы.						
2. Типы связи на границе раздела фаз.						

9. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1. Рекомендуемая литература

А. Основная литература

- 1. Жуков, А. П. Композиционные материалы на полимерной основе [Текст] : учебное пособие / А. П. Жуков, А. А. Абрашов, Т. А. Ваграмян. М. : РХТУ им. Д.И. Менделеева, 2012. 212 с.
- 2. Композиционные материалы. Классификация, особенности свойств, применение и технология получения [Электронный ресурс]: учебное пособие / Е. Н. Субчева. М.: РХТУ им. Д.И. Менделеева, 2017. 128 с.: ил.; 7,44 усл.печ.л. Библиогр.: с. 126-127.
- 3. Полимерные нанокомпозиты . Москва : Техносфера, 2011. 688 с. ISBN 978-5-94836-203-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/73018 (дата обращения: 22.05.2020).

Б. Дополнительная литература

- 1. Русин, Д. Л. Основы комплексного модифицирования полимерных композитов, перерабатываемых проходным прессованием [Текст] : учебное пособие / Д. Л. Русин. М. : РХТУ. Издат. центр, 2008. 221 с.
- 2. Технология получения композиционных материалов на основе армированных полимеров [Текст] : учебное пособие / Т. П. Кравченко [и др.]. М. : РХТУ им. Д.И. Менделеева, 2013. 79 с.
- 3. Дисперсно-наполненные полимерные нанокомпозиты : монография / Г.В. Козлов, Г.Е. Заиков, О.В. Стоянов, А.М. Кочнев. Казань : КНИТУ, 2012. 125 с. ISBN 978-5-7882-1315-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/73253 (дата обращения: 22.05.2020).

9.2. Рекомендуемые источники научно-технической информации

- Раздаточный иллюстративный материал к лекциям.
- Презентации к лекциям.

Научно-технические журналы:

- 1. Журнал «Российские нанотехнологии», ISSN 1992-7223
- 2. Журнал «Наноиндустрия», ISSN 1993-8578
- 3. Журнал «Журнал неорганической химии», ISSN 0044-457X
- 4. ACS Nano Print Edition ISSN: 1936-0851, Web Edition ISSN: 1936-086X

Ресурсы информационно-телекоммуникационной сети Интернет:

- 1. Ресурсы ELSEVIER: www.sciencedirect.com, www.scopus.com.
- 2. Ресурсы ACS: http://pubs.acs.org
- 3. Pecypcы Springer: http://www.springer.com/gp/products/journals
- 4. Ресурсы RCS: http://pubs.rsc.org/en/journals?key=title&value=all
- 5. Ресурсы Wiley: http://onlinelibrary.wiley.com/

9.3. Средства обеспечения освоения дисциплины

Для реализации дисциплины подготовлены следующие средства обеспечения освоения дисциплины:

- компьютерные презентации интерактивных лекций и семинаров 9, (общее число слайдов более 100);
- банк заданий для текущего контроля освоения дисциплины (общее число вопросов более 20);
- банк заданий для итогового контроля освоения дисциплины (общее число вопросов более 20).

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

Информационную поддержку изучения дисциплины осуществляет Информационно-библиотечный центр (ИБЦ) РХТУ им. Д.И. Менделеева, который обеспечивает обучающихся основной учебной, учебно-методической и научной литературой, необходимой для организации образовательного процесса по дисциплине. Общий объем многоотраслевого фонда ИБЦ на 01.01.2021 составляет 1 716 243 экз.

Фонд ИБЦ располагает учебной, учебно-методической и научно-технической литературой в форме печатных и электронных изданий, а также включает официальные, справочно-библиографические, специализированные отечественные и зарубежные периодические и информационные издания. ИБЦ обеспечивает доступ к профессиональным базам данных, информационным, справочным и поисковым системам.

Каждый обучающийся обеспечен свободным доступом из любой точки, в которой имеется доступ к сети Интернет и к электронно-библиотечной системе (ЭБС) Университета, которая содержит различные издания по основным изучаемым дисциплинам и сформирована по согласованию с правообладателями учебной и учебнометодической литературы.

Для более полного и оперативного справочно-библиографического и информационного обслуживания в ИБЦ реализована технология Электронной доставки документов.

Полный перечень электронных информационных ресурсов, используемых в процессе обучения, представлен в основной образовательной программе.

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В соответствии с учебным планом занятия по дисциплине «Полимерные нанокомпозиты» проводятся в форме лекций, практических занятий и самостоятельной работы обучающегося.

11.1. Оборудование, необходимое в образовательном процессе

Лекционная учебная аудитория, оборудованная электронными средствами демонстрации (компьютер со средствами звуковоспроизведения, проектор, экран) и учебной мебелью.

Библиотека, имеющая рабочие места, оснащенные компьютерами с доступом к базам данных и выходом в Интернет.

11.2. Учебно-наглядные пособия

Иллюстрации к практическим занятиям.

11.3. Компьютеры, информационно-телекоммуникационные сети, аппаратно-программные и аудиовизуальные средства

Персональные компьютеры, укомплектованные проигрывателями CD и DVD, принтерами и программными средствами; проекторы и экраны; цифровые камеры; копировальные аппараты; локальная сеть с выходом в Интернет.

11.4. Печатные и электронные образовательные и информационные ресурсы

Информационно-методические материалы: учебные пособия по дисциплине; раздаточный материал к разделам лекционного курса.

Электронные образовательные ресурсы: электронные презентации к разделам лекционного курса; учебно-методические разработки в электронном виде; справочные материалы в печатном и электронном виде; кафедральная библиотека электронных изданий.

11.5. Перечень лицензионного программного обеспечения:

№ п.п.	Наименование программного продукта	Реквизиты договора поставки	Количество лицензий	Срок окончания действия лицензии
1.	Calculate Linux Desktop	Свободно распространяемое ПО	Не ограниченно	Бессрочно
2.	LibreOffice	Свободно распространяемое ПО	Не ограниченно	Бессрочно
3.	ABBYY FineReader	Свободно распространяемое ПО	Не ограниченно	Бессрочно
4.	7-Zip	Свободно распространяемое ПО	Не ограниченно	Бессрочно
5.	Google Chrome	Свободно распространяемое ПО	Не ограниченно	Бессрочно
6.	VLC Media Player	Свободно распространяемое ПО	Не ограниченно	Бессрочно
7.	Discord	Свободно распространяемое ПО	Не ограниченно	Бессрочно
8.	Autodesk AutoCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
9.	IntellIJIDEA	Свободно распространяемое ПО	Не ограниченно	Бессрочно
10.	FreeCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
11.	SMath Studio	Свободно распространяемое ПО	Не ограниченно	Бессрочно
12.	Corel Academic Site Standard	Контракт № 90- 133ЭА/2021 от 07.09.2021	Лицензия для активации на рабочих станциях, покрывает все рабочие места в университете	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
13.	Kaspersky Endpoint Security для бизнеса – Стандартный Russian Edition.	Контракт № 90- 133ЭА/2021 от 07.09.2021	500 лицензий	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
14.	GIMP	Свободно распространяемое ПО	Не ограниченно	Бессрочно

15.	OBS (Open Broadcaster	Свободно	Не ограниченно	Бессрочно
	Software) Studio	распространяемое ПО		

12. ТРЕБОВАНИЯ К ОЦЕНКЕ КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

Наименование	Основные показатели оценки	Формы и методы
разделов		контроля и оценки
Раздел 1.	Знает:	Оценка за
Основы полимерных	• основные виды матриц и	контрольную
композиционных	наполнителей для создания	работу № 1.
наноматериалов	полимерных нанокомпозитов;	Оценка за реферат.
	• основные свойства различных	
	полимерных матриц и	Оценка на экзамене.
	полимерных композиционных	
	материалов;	
	• основные методы переработки	
	полимерных нанокомпозитов	
	Умеет:	
	• выбрать полимерный	
	нанокомпозиционный материал	
	для заданной области применения	
	• выбрать нужный тип матрицы и	
	наполнителя для создания	
	полимерного наноматериала с	
Danwar 2	заданными свойствами	0
Раздел 2.	Знает:	Оценка за
Методы переработки, особенности и	• основные виды матриц и	контрольную работу № 2.
перспективы	наполнителей для создания	pa001y № 2.
полимерных	полимерных нанокомпозитов;	Оценка за реферат.
КОМПОЗИЦИОННЫХ	• основные свойства различных	Оценка за реферат.
наноматериалов	полимерных матриц и	Оценка на экзамене.
nanemar opnarez	полимерных композиционных материалов;	оденка на окоамене.
	• основные методы переработки	
	полимерных нанокомпозитов	
	Умеет:	
	 выбрать полимерный 	
	нанокомпозиционный материал	
	для заданной области применения	
	• выбрать нужный тип матрицы и	
	наполнителя для создания	
	полимерного наноматериала с	
	заданными свойствами	
	Владеет:	
	• информацией о существующих и	
	перспективных областях	
	применения полимерных	
	нанокомпозитов; областях	
	применения наноматериалов и	
	наноструктур в виде рефератов,	

	презентац	

13. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с:

- Порядком организации и осуществления образовательной деятельности по образовательным программам – программам бакалавриата, программам специалитета, программам магистратуры (Приказ Минобрнауки РФ от 05.04.2017 № 301);
- Положением о порядке организации и осуществления образовательной деятельности по образовательным программам высшего образования программ бакалавриата, программ специалитета, программ магистратуры в РХТУ им. Д.И. Менделеева, принятым решением Ученого совета РХТУ им. Д.И. Менделеева от 30.10.2019, протокол № 3, введенным в действие приказом ректора РХТУ им. Д.И. Менделеева от 14.11.2019 № 646A;
- Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (утверждены заместителем Министра образования и науки РФ А.А. Климовым от 08.04.2014 № АК-44/05вн).

Дополнения и изменения к рабочей программе дисциплины «Полимерные нанокомпозиты» основной образовательной программы 28.04.03 «Наноматериалы»

код и наименование направления подготовки (специальности)

«Химическая технология наноматериалов»

наименование ООП Форма обучения: очная

Номер изменения/ дополнения	Содержание дополнения/изменения	Основание внесения изменения/дополнения
1.		протокол заседания Ученого совета № от
		протокол заседания Ученого совета №ототот
		протокол заседания Ученого совета №ототот
		протокол заседания Ученого совета № от от
		протокол заседания Ученого совета № от